
Delaunay Triangulation

Sunghee Choi

Algorithms

Voronoi and Delaunay : can compute one from the other in O(n)
time. (Delaunay is simpler to compute.)

• edge flipping

• divide-and-conquer

– O(n log n) worst case

– split the points in half by a line

– compute Delaunay triangulation of each piece

– merge

• sweep

– O(n log n) worst case

– use sweep line paradigm in some way

• randomized incremental

– O(n log n) expected

Divide and conquer

• The hard step is the merge: Given sets L
and R, S= LR, separated by a vertical
line, and their triangulations DT(L) and
DT(R), compute DT(S).

• There are RR edges, LL edges, and
cross edges.

• All new Delaunay edges in the merge are
cross edges: if an RR edge is Delaunay
now, it was before.

• Some triangles of DT(L) are deleted:
those with circumcircles containing points
of R.
...and symmetrically for DT(R).

• The cross edges are ordered along the
split line, and consecutive edges share a
vertex.

Divide and conquer

• The cross edges are built from
bottom to top, starting from a
cross edge that is a convex hull
edge.

• Conceptually, maintain an empty
disk on the current cross edge
{a,b}, pushing it up, but keeping a
and b on the bounding circle.

• The first site this "rising bubble"
hits gives the next cross edge.

• That site is on an edge incident to
a or b.

Divide and conquer

• To find it, walk around the edges
incident to a, deleting those
bounding triangles conflicting with
b. Find the first edge {a,a'} not
deleted.

• Similarly, walk around the edges
incident to b, finding edge {b,b'}.

• Either b or b' is hit first by the
"rising bubble", yielding the next
cross edge {a,b'} or {a',b}.

• Since O(n) work is done in the
merge, O(n log n) is needed
overall.

Randomized incremental algorithm

• Start with a large triangle that contains the
set P. (far away so that they do not
destroy any triangle in DT(P)).

• Later discard the initial triangle with their
incident edges.

• Add points in random order and maintain
DT.

• To insert a new point pr,

– Find the triangle containing pr in current DT.

– Add edges from pr to the vertices of this
triangle

– If pr lies on edge e of the triangle, add edges
from pr to the opposite vertices in triangles
sharing e.

Randomized incremental algorithm

• Legalize edges that may need to be

flipped.

– LEGALIZE(pr, pi pj) ,LEGALIZE(pr, pj pk),

LEGALIZE(pr, pk pi)

– LEGALIZE(pr, pi pl) , LEGALIZE(pr, pl pj) ,

LEGALIZE(pr, pj pk) , LEGALIZE(pr, pk pi)

Randomized incremental algorithm

• LEGALIZE(pr, pi pj)

 If pi pj is illegal

then let pi pj pk be the triangle adjacent prpi pj along pi pj

 Flip pi pj

 LEGALIZE(pr, pipk)

 LEGALIZE(pr, pkpj)

Incircle test

d lies inside triangle abc if and only if

Correctness

• Need to prove that no illegal edges remain after all calls
to LEGALIZE have been processed.

• Every new edge created due to the insertion of pr is
incident to pr

• Every new edge is legal.

• An edge can only become illegal if one of its incident
triangles changes.

Correctness

• Consider the first edges prpi, prpj, prpk (and
perhaps prpl) created.

• Shrink the circumcircle of pi pj pk so that it
passes through pr and pi. It is empty. Thus,
prpi is Delaunay edge. (Similarly, for prpj and
prpk (and for prpl, if it exists.))

• Consider an edge flipped by LEGALIZE.
Such an edge flip replaces an edge pipj of a
triangle pipjpl by an edge prpl incident to pr.
Since pi pj pl was Delaunay triangle before
the addition of pr and its circumcircle C
contains pr, we can shrink C to obtain an
empty circle C’ with only pipjpl on its
boundary. Hence, prpl is Delaunay edge.

Point location

• How to find the triangle containing the point pr?

• Use a similar idea to point location (trapezoidal map.)

• While we build DT, we also build a point location data

structure D.

• D : directed acyclic graph

• Leaves of D : triangles of current DT.

• Internal nodes of D : triangles that were created but have

been destroyed.

• Start with a single leaf node corresponding to the initial

triangle.

Point Location Data Structure

Point Location Data Structure

Point Location Data Structure

Point location

• Starting with the root node follow the links to the triangle

containing pr to find the leaf corresponding to the triangle

in current triangulation that contains pr.

• The out-degree of any node is at most 3.

• The point location takes linear time in the number of

nodes on the search path (= number of triangles in D

that contain pr).

Analysis

• Structural changes generated by the algorithm (=

number of triangles created during the course of the

algorithm)?

• Lemma : The expected number of triangles created by

the algorithm is at most 9n+1.

• Pf) When we insert pr, we split 1 or 2 triangles, creating 3

or 4 new triangles, and 3 or 4 new edges. For every

edge that we flip in LEGALIZE, we create two new

triangles, creating edges incident to pr.

• If after the insertion of pr, there are k edges in DT

incident to pr, then we have created at most 2(k-3)+3 =

2k-3 new triangles.

Analysis

• If after the insertion of pr, there are k edges in DT incident to
pr, then we have created at most 2(k-3)+3 = 2k-3 new
triangles.

• What is the expected degree of pr?

• Use backwards analysis!

• Consider the situation after insertion of pr.

• DT has at most 3(r+3)-3-3 edges.

• 3 edges are edges of initial bounding triangle.

• Total degree of vertices is at most 2(3(r+3)-6-3)=6r.

• Expected degree of vertices is at most 6.

• E[number of triangles created by insertion of pr]  E[2k-3]
=2E[k]-3 = 9

• Expected total number of created triangles is 1(initial
triangle)+9n.

Analysis

• Theorem : DT of n points in plane can be computed in

O(n log n) expected time and O(n) expected storage.

• Pf) Space : point location data structure D : every node

corresponds to a triangle created by the algorithm. O(n)

expected.

• Time : except for the time for point location, time spent

is proportional to the number of created triangles = O(n)

expected.

• Time for point location = O(number of triangles that

contain pr that were destroyed + 1(current Delaunay

triangle containing pr)).

Analysis

• A triangle pi pj pk can be destroyed

– When a new point pl has been inserted inside (or on the boundary of) pi

pj pk

– An edge flip has replaced pi pj pk and adjacent triangle pi pj pl. (Either pi

pj pk was Delaunay triangle before pl was inserted or pi pj pl was

Delaunay triangle before pk was inserted.)

• In all cases, we can charge the fact that the triangle pi pj pk was visited to a

Delaunay triangle  that has been detroyed in the same stage as pi pj pk and

such that the circumcircle of  contains pr

• K() : subset of points in P that lie in the circumcircle of .

• The visit to a triangle during the location of pr is charged to a triangle  with

pr  K().

• A triangle  can be charged at most once for every one of the points in K().

• Therefore, total time for point location is O(n +  card(K())), where the

summation is over all Delaunay triangles  created by the algorithm.

• Lemma 9.13 proves that E[ card(K())] = O(n log n).

