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A Simple Provable Algorithm for Curve Reconstruction 

Tamal K. Dey 

Abstract 

We present an algorithm that provably reconstructs a curve 
in the framework introduced by Amenta, Bern and Eppstein. 
The highlights of the algorithm are: (i) it is simple, (ii) it 
requires a sampling density better than previously known, 
(iii) it can be adapted for curve reconstruction in higher 
dimensions straightforwardly. 

1 Introduction 

We consider the problem of curve reconstruction that 
takes a set of sample points on a smooth closed curve 
C, and requires to produce a geometric graph G having 
exactly those edges that connect sample points adjacent 
in C. Obviously, given only the samples, it is not always 
possible to compute G unless some additional conditions 
are satisfied by the input. Amenta, Bern and Eppstein 
[I] proposed a framework based on local feature size 
under which they show two graphs, crust and &skeleton, 
coincide with G if the points are sufficiently sampled. 
Some of the other effective approaches include o-shapes 
by [6] which is analyzed later by [3], r-regular shapes by 
[2], d-shapes by [7] and a Delaunay based method by [43. 
A survey of these methods appear in [5]. In this paper 
we show that a modified nearest neighbor graph also 
coincides with G. The algorithm and its analysis are 
simple. Nevertheless, it improves the sampling density 
to l/3 from 0.252 as required by [l]- More importantly, 
the algorithm generalizes to higher dimepsional curve 
reconstruction almost straightforwardly. It is not hard 
to verify that all lemmas and theorem of section 3 hold 
in any ambient Euclidean space. 

We require the following definitions most of which 
have been introduced in [I]. The medial axis M of 
a smooth curve C in Rd is the closure of all points 
that have two or more closest points in C. The local 
feature sire j(p) at a point p E C is the least Euclidean 
distance of p from M. A point set P 5 C is an E- 
sample of C if and only if each point p E C has a 
sample within ef(p) distance. The angle between two 
edges sharing a common point is the smaller of the two 
planar angles made by them. We denote the Euclidean 
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distance between two points p, q and the length of an 
edge e with e(w) and e(e) respectively. 

2 The algorithm 

Algorithm NN-CRUST(input: an c-sample P) 

Step 1: Compute the set of edges N that connect 
nearest neighbors in P. 
Step 2: Let a be a point that is incident with only one 
edge e in N. Compute the shortest edge incident with 
a among all the edges that make an angle more than 
r/2 with e. Let D be the set of all such edges. 
Step 3: Output G = N U D. 

Both steps 1 and 2 can be performed on the edges 
of the Delaunay triangulation T of P since the desired 
graph G is known to be contained in T [l]. This implies 
that, in R2, all steps of NN-CRUST takes time O(n) 
once T is computed in time O(nlogn), where n is the 
number of points in P. 

3 Proof of correctness 

The first lemma is easily deducible from triangular 
inequality, the second one is proved in [I], and we skip 
the proof of the third one. 

LEMMA 3.1. f(q) 5 f(p) +e(pq) for any two points p, q 
in C. 

LEMMA 3.2. Zf B is a closed ball with B n C not a l- 
disk, then B contains a medial azis point. 

LEMMA 3.3. The angle between two adjacent edges in 
G is more than x/2 if c 5 l/3. 

LEMMA 3.4. f(e) < &f(p) for any edge e E G, where 
p is an endpoint of e and e < 1. 

Proofi Let q be the point where the perpendicular 
bisector of e = ab intersects the portion of C over which 
a and b are adjacent. Grow a ball centered at q until it 
touches the two endpoints of e. The growing ball always 
intersects C in a l-disk since otherwise its radius would 
be greater than or equal to f(q) (Lemma 3.2) when it 
had touched the first sample; a case eliminated by the 
sampling condition at q with c < 1. It follows that the 
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two endpoints of e are the nearest samples to q. This 
implies p(e) < 2ef(q). Substitute f(q) by *f(p) since 

Lemma 3.1 gives f(s) 5 fb) + b) 5 fb) + d(4). 

LEMMA 3.5. Let e @ G be any edge between two samples 
and a be any of its endpoints. Then, either e(e) > j(a), 
or there is an edge h E G incident u;ith a which makes 
an angle less than r/2 with e and e(h) < f(e). 

Proo~Y Consider the closed ball B with e as diameter. 
In case C’, = B n C is a l-disk: there must be an edge 
ax E G where x lies in C,. Otherwise: e E G. It 
follows that the edge ax sharing an endpoint a with the 
diameter e must make an angle less than r/r! with it 
and P(ax) < e(e). 

In the other case when C, is not a l-disk, apply 
Lemma 3.2 to conclude that B has a medial axis point 
and hence e(e) > f(a). 

LEMMA 3.6. Let a be any sample and b its nearest 
neighbor. The edge ab is in G if e 5 l/3. 

Proof: Suppose, on the contrary, ab @ G. Then, we 
argue that both conditions of Lemma 3.5 are violated 
reaching a contradiction. Let ax be an edge in G. First 
consider the case of .b?(ab) > f(a). With c 5 I/3 we 
have fJ(ax) < &f(a) < j(a) (Lemma 3.4). This gives 
2(ax) < e(ab), an impossibility since b is the nearest 
neighbor to a. Next, consider the case !(ab) < j(a). 
According to Lemma 3.5 there is an edge ax G G so 
that ((ax) < !?(ab) reaching a contradiction. 

THEOREM 3.1. Given an e-sample for a closed curve 
with E 5 l/3, the algorithm NN-CRUST outputs an edge 
e if and only if e E G. 

Proof: Let e = ab be an edge computed by the 
algorithm. Let ax,ay denote the two edges in G that 
are incident with a. If e is computed in step 1, it is in 
G due to Lemma 3.6. Otherwise, it is computed in step 
2 which means one of the edges ax and ay, say ax, has 
aiready been computed in step 1. The edge e makes 
an angle more than z/2 with ax. The edge ay also 
makes an angle more than r/2 with ax due to Lemma 
3.3. If e $Z G, then Lemma 3.5 applies to conclude that 
Qay) < e(e). But, that is impossiblesince the algorithm 
chose e to be the shortest edge making angle more than 
lr/2 with ax. 

To show the the other direction consider any edge 
e = ab in G. If e is a nearest neighbor edge then it 
is computed in step 1. Otherwise, the other edge in G 
incident with a, say ax, must be a nearest neighbor edge 
and has been computed in step 1. The edge e makes an 
angle more than r/2 with ax and e is the shortest among 

Figure 1: A reconstructed curve in 3D 

all such edges. Otherwise, Lemma 3.5 is violated. This 
means that e- is computed in step 2. 

An example: In Figure 1 we show a reconstruction in 
30. The 550 points are sampled from the parametric 
curve x = sin t*, y = cost*, z = t/3.0. This is a case of 
a curve with endpoints. We took care of the endpoints 
specially in the program. 
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