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A Simple Provable Algorithm for Curve Reconstruction

Tamal K. Dey

Abstract

We present an algorithm that provably reconstructs a curve
in the framework introduced by Amenta, Bern and Eppstein.
The highlights of the algorithm are: (i) it is simple, (i) it
requires a sampling density better than previously known,
(i) it can be adapted for curve reconstruction in higher
dimensions straightforwardly.

1 Introduction

We consider the problem of curve reconstruction that
takes a set of sample points on a smooth closed curve
C, and requires to produce a geometric graph G having
exactly those edges that connect sample points adjacent
in C. Obviously, given only the samples, it is not always
possible to compute G unless some additional conditions
are satisfied by the input. Amenta, Bern and Eppstein
[1] proposed a framework based on local feature size
under which they show two graphs, crust and 3-skeleton,
coincide with G if the points are sufficiently sampled.
Some of the other effective approaches include a-shapes
by [6] which is analyzed later by 3], mregular shapes by
[2], A-shapes by [7] and a Delaunay based method by [4].
A survey of these methods appear in [5]. In this paper
we show that a modified nearest neighbor graph also
coincides with G. The algorithm and its analysis are
simple. Nevertheless, it improves the sampling density
to 1/3 from 0.252 as required by [1]. More importantly,
the algorithm generalizes to higher dimensional curve
reconstruction almost straightforwardly. It is not hard
to verify that all lemmas and theorem of section 3 hold
in any ambient Euclidean space.

We require the following definitions most of which

have been introduced in [1]. The medial azris M of
a smooth curve C in R? is the closure of all points
that have two or more closest points in C. The local
feature size f(p) at a point p € C is the least Euclidean
distance of p from M. A point set P C C is an ¢
sample of C if and only if each point p € C has a
sample within ef(p) distance. The angle between two
edges sharing a common point is the smaller of the two
planar angles made by them. We denote the Euclidean
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distance between two points p,q and the length of an
edge e with £(pg) and {(e) respectively.

2 The algorithm
Algorithm NN-CRUST{input: an e-sample P)

Step 1: Compute the set of edges /N that connect
nearest neighbors in P.

Step 2: Let a be a point that is incident with only one
edge e in N. Compute the shortest edge incident with
a among all the edges that make an angle more than
/2 with e. Let D be the set of all such edges.

Step 3: Qutput G = NUD.

Both steps 1 and 2 can be performed on the edges
of the Delaunay triangulation T of P since the desired
graph G is known to be contained in T [1]. This implies
that, in R?, all steps of NN-CRUST takes time O(n)
once T is computed in time O(nlogn), where n is the
number of points in P.

3 Proof of correctness

The first lemma is easily deducible from triangular
inequality, the second one is proved in [1], and we skip
the proof of the third one.

LemMma 3.1. fg) < f(p)+{(pg) for any two points p, g
in C.

LEMMA 3.2. If B is a closed ball with BN C not a 1-
disk, then B contains a medial azxis point.

LemMMA 3.3. The angle between two adjacent edges in
G is more than =/2 if e <1/3.

LEMMA 3.4. £(e) < < f(p) for any edge € € G, where
p s an endpoint of e and e < 1.

Proof: Let q be the point where the perpendicular
bisector of € = ab intersects the portion of C over which
a and b are adjacent. Grow a ball centered at ¢ until it
touches the two endpoints of e. The growing ball always
intersects C in a 1-disk since otherwise its radius would
be greater than or equal to f{g) (Lemma 3.2) when it
had touched the first sample; a case eliminated by the
sampling condition at ¢ with ¢ < 1. It follows that the



5894

two endpoints of e are the nearest samples to g. This
implies £(e) < 2¢f(q). Substitute f(q) by % f(p) since
Lemma 3.1 gives f(q) < f(p) + 4(pg) < f(p) + €f(g).

LEMMA 3.5. Lete € G be any edge between two samples
and a be any of its endpoints. Then, either {(e) > f(a),
or there is an edge h € G incident with a which makes
an angle less than ©/2 with e and £(h) < £(e).

Proof Consider the closed ball B with e as diameter.
In case C; = BN (Cis a 1-disk, there must be an edge
az € G where z lies in C.. Otherwise, e € G. It
follows that the edge ar sharing an endpoint a with the
diameter e must make an angle less than =/2 with it
and {(ar) < £(e).

In the other case when C. is not a 1-disk, apply
Lemma 3.2 to conclude that B has a medial axis point
and hence {(e) > f(a).

LEMMA 3.6. Let a be any sample and b its nearest
neighbor. The edge ab is in G ife < 1/3.

Proof: Suppose, on the contrary, ab € G. Then, we
argue that both conditions of Lemma 3.5 are violated
reaching a contradiction. Let az be an edge in G. First
consider the case of £(ad) > f{a). With € < 1/3 we
have £(az) < 5 f(a) < f(a) (Lemma 3.4). This gives
f(az) < {(ab), an impossibility since b is the nearest
neighbor to a. Next, consider the case £(ab) < f(a).
According to Lemma 3.5 there is an edge az in G so
that ¢(ax) < £(ab) reaching a contradiction.

THEOREM 3.1. Given an ¢-sample for a closed curve
with € < 1/3, the algorithm NN-CRUST outputs an edge
eifandonly ife € G.

Proof: Let e = ab be an edge computed by the
algorithm. Let az,ay denote the two edges in G that
are incident with a. If e is computed in step 1, it is in
G due to Lemma 3.6. Otherwise, it is computed in step
2 which means one of the edges az and ay, say az, has
already been computed in step 1. The edge ¢ makes
an angle more than #/2 with az. The edge ay also
makes an angle more than x/2 with ez due to Lemma
3.3. If e ¢ G, then Lemma 3.5 applies to conclude that
{{ay) < {(e). But, that is impossible since the algorithm
chose e to be the shortest edge making angle more than
7 /2 with az.
To show the the other direction consider any edge
e = abin G. If e is a nearest neighbor edge then it
is computed in step 1. Otherwise, the other edge in G
- incident with a, say az, must be a nearest neighbor edge
and has been computed in step 1. The edge ¢ makes an
angle more than = /2 with az and e is the shortest among

Figure 1: A reconstructed curve in 3D

all such edges. Otherwise, Lemma 3.5 is violated. This
means that e is computed in step 2.

An example: In Figure 1 we show a reconstruction in
3D. The 550 points are sampled from the parametric
curve z = sint?, y = cost?, z = ¢/3.0. This is a case of
a curve with endpoints. We took care of the endpoints
specially in the program.
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